73 research outputs found

    Probability-Based Dynamic Time Warping for Gesture Recognition on RGB-D Data

    Get PDF
    Dynamic Time Warping (DTW) is commonly used in gesture recognition tasks in order to tackle the temporal length variability of gestures. In the DTW framework, a set of gesture patterns are compared one by one to a maybe infinite test sequence, and a query gesture category is recognized if a warping cost below a certain threshold is found within the test sequence. Nevertheless, either taking one single sample per gesture category or a set of isolated samples may not encode the variability of such gesture category. In this paper, a probability-based DTW for gesture recognition is proposed. Different samples of the same gesture pattern obtained from RGB-Depth data are used to build a Gaussian-based probabilistic model of the gesture. Finally, the cost of DTW has been adapted accordingly to the new model. The proposed approach is tested in a challenging scenario, showing better performance of the probability-based DTW in comparison to state-of-the-art approaches for gesture recognition on RGB-D data

    Deep Learning for Action and Gesture Recognition in Image Sequences: A Survey

    Get PDF
    Interest in automatic action and gesture recognition has grown considerably in the last few years. This is due in part to the large number of application domains for this type of technology. As in many other computer vision areas, deep learning based methods have quickly become a reference methodology for obtaining state-of-the-art performance in both tasks. This chapter is a survey of current deep learning based methodologies for action and gesture recognition in sequences of images. The survey reviews both fundamental and cutting edge methodologies reported in the last few years. We introduce a taxonomy that summarizes important aspects of deep learning for approaching both tasks. Details of the proposed architectures, fusion strategies, main datasets, and competitions are reviewed. Also, we summarize and discuss the main works proposed so far with particular interest on how they treat the temporal dimension of data, their highlighting features, and opportunities and challenges for future research. To the best of our knowledge this is the first survey in the topic. We foresee this survey will become a reference in this ever dynamic field of research

    Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport

    Full text link
    Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in phantoms with water-lung-water or water-bone-water slab geometry. A 20 MeV mono-energetic electron point source or a 6 MV photon point source is used in our validation. The results demonstrate adequate accuracy of our GPU implementation for both electron and photon beams in radiotherapy energy range. Speed up factors of about 5.0 ~ 6.6 times have been observed, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor.Comment: 13 pages, 3 figures, and 1 table. Paper revised. Figures update

    Energetics and Vibrational States for Hydrogen on Pt(111)

    Get PDF
    We present a combination of theoretical calculations and experiments for the low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111) surface. The vibrational band states are calculated based on the full three-dimensional adiabatic potential energy surface obtained from first principles calculations. For coverages less than three quarters of a monolayer, the observed experimental high-resolution electron peaks at 31 and 68meV are in excellent agreement with the theoretical transitions between selected bands. Our results convincingly demonstrate the need to go beyond the local harmonic oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200

    Edible Insect Consumption for Human and Planetary Health: A Systematic Review

    Get PDF
    This systematic review aimed to examine the health outcomes and environmental impact of edible insect consumption. Following PRISMA-P guidelines, PubMed, Medline ProQuest, and Cochrane Library databases were searched until February 2021. Twenty-five articles met inclusion criteria: twelve animal and six human studies (randomized, non-randomized, and crossover control trials), and seven studies on sustainability outcomes. In animal studies, a supplement (in powdered form) of 0.5 g/kg of glycosaminoglycans significantly reduced abdominal and epididymal fat weight (5–40% and 5–24%, respectively), blood glucose (10–22%), and total cholesterol levels (9–10%), and a supplement of 5 mg/kg chitin/chitosan reduced body weight (1–4%) and abdominal fat accumulation (4%) versus control diets. In other animal studies, doses up to 7–15% of edible insect inclusion level significantly improved the live weight (9–33%), reduced levels of triglycerides (44%), cholesterol (14%), and blood glucose (8%), and increased microbiota diversity (2%) versus control diet. In human studies, doses up to 7% of edible insect inclusion level produced a significant improvement in gut health (6%) and reduction in systemic inflammation (2%) versus control diets and a significant increase in blood concentrations of essential and branched-chain amino acids and slowing of digestion (40%) versus whey treatment. Environmental indicators (land use, water footprint, and greenhouse gas emissions) were 40–60% lower for the feed and food of edible insects than for traditional animal livestock. More research is warranted on the edible insect dose responsible for health effects and on environmental indicators of edible insects for human nutrition. This research demonstrates how edible insects can be an alternative protein source not only to improve human and animal nutrition but also to exert positive effects on planetary health

    Antitumor activity against murine lymphoma L5178Y model of proteins from cacao (Theobroma cacao L.) seeds in relation with in vitro antioxidant activity

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recently, proteins and peptides have become an added value to foodstuffs due to new knowledge about its structural analyses as related to antioxidant and anticancer activity. Our goal was to evaluate if protein fractions from cacao seeds show antitumor activity on lymphoma murine L5178Y model. The antioxidant activity of these fractions was also evaluated with the aim of finding a correlation with the antitumor activity.</p> <p>Methods</p> <p>Differential extraction of proteins from unfermented and semi-fermented-dry cacao seeds was performed and characterized by SDS-PAGE and FPLC size-exclusion chromatography. Antitumor activity was evaluated against murine lymphoma L5178Y in BALB/c mice (6 × 10<sup>4 </sup>cells i.p.), with a treatment oral dose of 25 mg/kg/day of each protein fraction, over a period of 15 days. Antioxidant activity was evaluated by the ABTS<sup>+ </sup>and ORAC-FL assays.</p> <p>Results</p> <p>Albumin, globulin and glutelin fractions from both cacao seed type were obtained by differential solubility extraction. Glutelins were the predominant fraction. In the albumin fraction, polypeptides of 42.3 and 8.5 kDa were found in native conditions, presumably in the form of two peptide chains of 21.5 kDa each one. The globulin fraction presented polypeptides of 86 and 57 kDa in unfermented cacao seed that produced the specific-cacao aroma precursors, and after fermentation the polypeptides were of 45 and 39 kDa. The glutelin fraction presented proteins >200 kDa and globulins components <100 KDa in lesser proportion. Regarding the semifermented-dry cacao seed, it was observed that the albumin fraction showed antitumoral activity, since it caused significant decreases (p < 0.05) in the ascetic fluid volume and packed cell volume, inhibiting cell growth in 59.98 ± 13.6% at 60% of the population; while the greatest antioxidant capacity due to free radical scavenging capacity was showed by the albumin and glutelin fraction in both methods assayed.</p> <p>Conclusion</p> <p>This study is the first report on the biological activity of semifermented-dry cacao protein fractions with their identification, supporting the traditional use of the plant. The albumin fraction showed antitumor and free radical scavenging capacity, however both activities were not correlated. The protein fractions could be considered as source of potential antitumor peptides.</p

    Development of copper based drugs, radiopharmaceuticals and medical materials

    Full text link

    Hechos, textos y comentarios [RESEÑA]

    No full text
    José Luis Soto Pérez, Junípero Serra en la vida y obra de Lino Gómez Canedo. Hechos, textos y comentarios, Eco Franciscano, Santiago de Compostela 2015, 339 pp
    corecore